天文进阶必看——广义相对论解析

释放双眼,带上耳机,听听看~!

广义相对论(General Relativity) 是描述物质间引力相互作用的理论。其基础由A.爱因斯坦于1915年完成,1916年正式发表。这一理论首次把引力场解释成时空的弯曲。[1]

概念介绍

黑洞

广义相对论在天体物理学中有着非常重要的应用:它直接推导出某些大质量恒星会终结为一个黑洞——时空中的某些区域发生极度的扭曲以至于连光都无法逸出;能够形成黑洞的恒星最小质量称为奥本海默极限。

引力透像

有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们能够观察到处于遥远位置的同一个天体的多个成像。

引力波

广义相对论还预言了引力波的存在(爱因斯坦于1918年写的论文《论引力波》),现已被直接观测所证实。此外,广义相对论还是现代宇宙学的膨胀宇宙模型的理论基础。[2]

时空关系

19世纪末由于牛顿力学和(苏格兰数学家)麦克斯韦(1831~1879年)电磁理论趋于完善,一些物理学家认为“物理学的发展实际上已经结束”,但当人们运用伽利略变换解释光的传播等问题时,发现一系列尖锐矛盾,对经典时空观产生疑问。爱因斯坦对这些问题,提出物理学中新的时空观,建立了可与光速相比拟的高速运动物体的规律,创立相对论。
狭义相对论提出两条基本原理。(1)光速不变原理:即在任何惯性系中,真空中光速c都相同,为299,792,458m/s,与光源及观察者的运动状况无关。(2)狭义相对性原理:是指物理学的基本定律乃至自然规律,对所有惯性参考系来说都相同。

爱因斯坦的第二种相对性理论(1916年)。该理论认为引力是由空间——时间弯曲的几何效应(也就是,不仅考虑空间中的点之间,而是考虑在空间和时间中的点之间距离的几何)的畸变引起的,因而引力场影响时间和距离的测量。[3]

万有引力

广义相对论:是一种关于万有引力本质的理论。爱因斯坦曾经一度试图把万有引力定律纳入相对论的框架,几经失败后,他终于认识到,狭义相对论容纳不了万有引力定律。于是,他将狭义相对性原理推广到广义相对性,又利用在局部惯性系中万有引力与惯性力等效的原理,建立了用弯曲时空的黎曼几何描述引力的广义相对论理论。

狭义相对论

狭义相对论与广义相对论:狭义相对论的时空背景是平直的四维时空,而广义相对论则适用于任意伪黎曼空间,它的时空背景是弯曲的黎曼时空。

诞生背景

发展过程

爱因斯坦在1905年发表了一篇探讨光线在狭义相对论中,重力和加速度对其影响的论文,广义相对论的雏型就此开始形成。1912年,爱因斯坦发表了另外一篇论文,探讨如何将引力场用几何的语言来描述。至此,广义相对论的运动学出现了。到了1915年,爱因斯坦场方程发表了出来,整个广义相对论的动力学才终于完成。

解开场方程式

1915年后,广义相对论的发展多集中在求解场方程上,解的物理解释以及寻求可能的实验与观测也占了很大的一部份。但场方程是非线性偏微分方程,很难得出解来,所以在电脑应用于科学上之前,只得到了少数的精确解。其中最著名的有三个解:史瓦西解、
雷斯勒——诺斯特朗姆解、克尔解。[4]

三大验证

在广义相对论的实验验证上,有著名的三大验证。在水星近日点的进动中,每百年43秒的剩余进动长期无法得到解释,被广义相对论完满地解释清楚了。光线在引力场中的弯曲,广义相对论计算的结果比牛顿理论正好大了1倍,爱丁顿和戴森的观测队利用1919年5月29日的日全食进行观测的结果,证实了广义相对论是正确的。再就是引力红移,按照广义相对论,在引力场中的时钟要变慢,因此从恒星表面射到地球上来的光线,其光谱线会发生红移,这也在很高精度上得到了证实。从此,广义相对论理论的正确性得到了广泛地承认。[5]

另外,宇宙的膨胀也创造出了广义相对论的另一场高潮。从1922年开始,研究者们就发现场方程所得出的解答会是一个膨胀中的宇宙,而爱因斯坦在那时自然也不相信宇宙不是静止的,所以他在场方程中加入了一个宇宙常数来使场方程可以解出一个稳定宇宙的解。但是这个解有两个问题:在理论上,这个解不稳定,一经微扰便会膨胀或收缩;另外在观测上,1929年,哈勃发现了宇宙其实是在膨胀的,这个实验结果使得爱因斯坦放弃了宇宙常数,并宣称这是我一生最大的错误(the
biggest blunder in my career)。

但根据最近的I型超新星的观察,宇宙膨胀正在加速。所以宇宙常数有再度复活的可能性,宇宙中存在的暗能量可能要用宇宙常数来解释.[6]

基本假设

演化方程

每一个爱因斯坦场方程的解都是一个宇宙,这里的宇宙含义既包括了整个空间,也包括了过去与未来——它们并不单单是反映某些事物的“快照”,而是所描述的时空的完全写真。每一个解在其专属的特定宇宙中都能描述任意时间和任意位置的时空几何和物质状态。出于这个表征,爱因斯坦的理论看上去与其他大多数物理理论有所不同:大多数物理理论都需要指明一个物理系统的演化方程(例如量子力学中的埃伦费斯特定理),即如果一个物理系统在给定时刻的状态已知,其演化方程能够允许描述系统在过去和未来的状态。爱因斯坦理论中的引力场和其他场的更多区别还在于前者是自身相互作用的(是指它在没有其他场出现时仍然还是非线性的),并且不具有固定的背景结构(在宇宙尺度上会发生演化)。

为了更好地理解爱因斯坦场方程这个与时间有关的偏微分方程,可以将它写成某种能够描述宇宙随时间演化的形式。这种形式被称作“3+1”分解,其中时空被分为三维空间和一维时间。最著名的形式叫做ADM形式,在这种分解下广义相对论的时空演化方程具有良好的性质:在适当的初始条件给定的情形下方程有唯一解。场方程的“3+1”分解形式是数值相对论的研究基础。

全局和准局部量

演化方程的观念与广义相对论性物理中的另一个方面紧密联系:在爱因斯坦的理论中,一个系统的总质量(或能量)这个看似简单的概念无法找到一种普遍性的定义。其原因在于,引力场原则上并不像其他的场那样具有可以局部化的能量。

尽管如此,试图通过其他途径来定义一个系统的总质量还是可能的,在经典物理中,质量(或能量)的定义可以来自时间平移不变性的守恒量,或是通过系统的哈密顿形式。在广义相对论中,从这两种途径出发可以分别得到如下质量的定义:

  • Komar质量:从类时的Killing矢量出发通过Komar积分得到的在时间平移不变性下的守恒量,表现为一个静态时空的总能量;
  • ADM质量:在一个渐近平直时空中建立广义相对论的哈密顿形式,从中定义系统的总能量。

如果将一个系统的总质量中被引力波携带至无限远处的能量除去,得到的结果叫做类光无限远处的Bondi质量。这些定义而来的质量被舍恩和丘成桐的正能定理证明是正值,而动量和角动量也具有全局的相应定义。在这方面的研究中还有很多试图建立所谓准局部量的尝试,例如仅通过一个孤立系统所在的有限空间区域中包含的物理量来构造这个孤立系统的质量。这类尝试寄希望于能够找到一个更好地描述孤立系统的量化方式,例如环假说的某种更精确的形式。

本文由奇点天文作者上传并发布,奇点天文仅提供文章投稿展示,文章仅代表作者个人观点,不代表奇点天文立场。

给TA买糖
共{{data.count}}人
人已赞赏
入围博克体计划奇思妙想

宇宙中恒星的绝对星等是怎样确定的?

2021-6-14 9:58:09

入围博克体计划奇思妙想

水真的是生命必须的吗?

2021-6-14 11:14:47

3 条回复 A文章作者 M管理员
  1. 天文萌新

    看完了,20分钟

个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索